Environmental effects of H2O on fracture initiation in silicon: A hybrid electronic-density-functionalÕmolecular-dynamics study

نویسندگان

  • Shuji Ogata
  • Fuyuki Shimojo
  • Rajiv K. Kalia
  • Aiichiro Nakano
  • Priya Vashishta
چکیده

A hybrid quantum-mechanical/molecular-dynamics simulation is performed to study the effects of environmental molecules on fracture initiation in silicon. A ~110! crack under tension ~mode-I opening! is simulated with multiple H2O molecules around the crack front. Electronic structure near the crack front is calculated with density functional theory. To accurately model the long-range stress field, the quantum-mechanical description is embedded in a large classical molecular-dynamics simulation. The hybrid simulation results show that the reaction of H2O molecules at a silicon crack tip is sensitive to the stress intensity factor K. For K50.4 MPa•Am, an H2O molecule either decomposes and adheres to dangling-bond sites on the crack surface or oxidizes Si, resulting in the formation of a Si–O–Si structure. For a higher K value of 0.5 MPa •Am, an H2O molecule either oxidizes or breaks a Si–Si bond. © 2004 American Institute of Physics. @DOI: 10.1063/1.1689004#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of p-Type Nano-porous Silicon Prepared by Electrochemical Etching Technique in HF-Ethanol and HF-Ethanol-H2O Solutions

Nano-porous silicon were simply prepared from p-type single crystalline silicon wafer by electrochemical etching technique via exerting constant current density in two different HF-Ethanol and HF-Ethanol-H2O solutions. The mesoporous silicon layers were characterized by field emission scanning electron microscopy and scanning electron microscopy. The results demonstrate that the width of nano-p...

متن کامل

Electronic Properties of Hydrogen Adsorption on the Silicon- Substituted C20 Fullerenes: A Density Functional Theory Calculations

The B3LYP/6-31++G** density functional calculations were used to obtain minimum geometries and interaction energies between the molecular hydrogen and nanostructures of fullerenes, C20 (cage), C20 (bowl), C19Si (bowl, penta), C19Si (bowl, hexa). The H2 molecule is set as adsorbed in the distance of 3Å at vertical position from surface above the pentagonal and hexagonal sites of nanostructures. ...

متن کامل

Theoretical study of interaction of 4-amino phenyl-azobenzene with (SWCNTs), A DFT method

The electronic and structural properties of single wall carbon nanotubes (SWCNTs) interacted with 4-amino phenyl-azobenzene were theoretically investigated by using the hybrid DFT (hybrid-density functional theory) calculations. The amount of thermodynamic parameters of this reaction in the gas and aqueous phase suggesting thermodynamic favourability for adsorption of 4-amino phenyl-azobenzene ...

متن کامل

Theoretical study of interaction of 4-amino phenyl-azobenzene with (SWCNTs), A DFT method

The electronic and structural properties of single wall carbon nanotubes (SWCNTs) interacted with 4-amino phenyl-azobenzene were theoretically investigated by using the hybrid DFT (hybrid-density functional theory) calculations. The amount of thermodynamic parameters of this reaction in the gas and aqueous phase suggesting thermodynamic favourability for adsorption of 4-amino phenyl-azobenzene ...

متن کامل

Structural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study

We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004